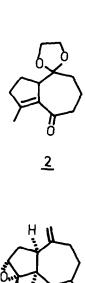
GUAIANOLIDES: THE TOTAL SYNTHESIS OF (+)-ESTAFIATIN

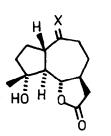
M. Demuynck, A.A. Devreese, P.J. De Clercq and M. Vandewalle

State University of Gent, Department of Organic Chemistry,

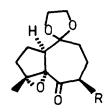
Laboratory for Organic Synthesis

Krijgslaan, 281 (S.4), B-9000 GENT (Belgium)

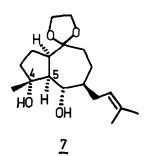

SUMMARY

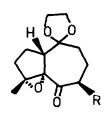

An efficient synthesis of the trans fused perhydroazulenic epoxy ketone $\underline{5}$ is described. The potentiality of $\underline{5}$ is illustrated by its transformation into $(\frac{1}{2})$ -estafiatin $\underline{1}$.

Despite a long history, a wide distribution in nature, and extensive studies in relation to interconversions with other sesquiterpene classes², no total synthesis of a naturally occurring guaianolide has been reported until recently³. This stands in sharp contrast with a large number of recent, successful approaches to the biogenetically related pseudoguaianolides⁴. From our experience this discrepancy in synthetic activities on both series is related to the different position of the 15-methyl substituent. In pseudoguaianolides the C-5 angular position of the methyl group is an important factor allowing good stereo- and regiocontrol for the formation of other substituents.


Since most guaianolides are cis fused perhydroazulenes (αH) with a trans fused γ -lactone closed at C-6(α), a general approach implies the control of the relative configuration at C-1,C-5,C-6 and C-7, while permitting the formation of additional functionalities in the five-membered ring and at C-10. In a previous communication we have demonstrated the viability of a general route to guaianolides based upon the reductive cleavage of keto-epoxide $\underline{4}$ which yielded the desired stereochemical set-up at the ring-fusions (cf. $\underline{7}$). This route, however, centered upon keto-epoxide $\underline{3}$ which could only be obtained in modest yield (cumylhydroperoxide, triton B, THF, 5 days, r.t.; 48 %).

We now report on an alternative route, starting from the more readily obtained isomeric epoxide $\underline{5}$, and illustrate its potentiality with the total synthesis of $(\frac{1}{2})$ -estafiatin $(\underline{1})^5$. The modified route is based upon the following assumptions: (1) the enolate formed upon initial reductive opening of keto-epoxides such as $\underline{4}$ and $\underline{6}$ is protonated internally via the 4-oxy group, thus dictating the configuration at C-5 $(\underline{4} + \underline{7})$ and $\underline{6} + \underline{8}$; (2) at an appropriate stage of the sequence inversion at C-1 will establish the naturally observed stereochemistry (cf. $\underline{1}$).




$$9 X = 0CH_2CH_2O$$
10 $X = 0$

3 R = H 4 R=CH2CH=CMe2

$$11 \quad X = 0CH_2CH_2O$$
 $12 \quad X = 0$

<u>5</u> R= H <u>6</u> R=CH₂CH=CMe₂

 $13 X=0; Y=H_2$

 $14 \times CH_2; Y = H_2$

15 X = CH2 ; Y= CH2

The epoxidation of 2^7 (H_2O_2 , NaOH, MeOH, -20° to -5° C, 24 hr) yielded the diastereoisomeric epoxides 5 and 3 (ratio 9:1) from which 5 was obtained after column chromatography (SiO₂, ether-isooctane 1:1) in 70 % isolated yield. $|5:m.p.\ 110-111^\circ$ C; $v\ 1720$, 1070, $960\ cm^{-1}$; δ (CDCl₃) 3.92 (4H, m), 2.8 (1H, dd, 7 and $10.5\ Hz$); 2.69 (2H, m), 1.42 (3H, s); m/z at 238 (M^+ , 8), 99 (100)|. Alkylation of ketone 5 with isoprenylbromide (LDA, 1.1 eq. HMPA, THF, -78° to -40° C, 2 h) and column chromatography (SiO₂, ethylacetate-isooctane 8:7) provided pure 6 (60 %) and the C-7(α)epimer (16 %). Treatment of the latter α -epimer with LDA and HMPA (10 eq) in THF and subsequent quenching with NH₄Cl gave a 6:4 ratio in favour of 6 (after this recycling 69 % combined yield). $|6:v\ 1720$, 1460, 1170, 1050, $960\ cm^{-1}$; δ (CDCl₃) 5.03 (1H, m), 3.9 (4H, m), 2.66 (1H, dd, 8 and $10\ Hz$), 2.85 (1H, m), 1.68 (3H, s), 1.61 (3H, s), 1.35

(3H, s); m/z at 306 (M⁺; 3), 263 (3), 237 (4), 181 (20), 99 (100) |. A solution of $\underline{6}$ in liq. ammonia-THF was twice treated successively with lithium (10 eq) and NH₄Cl (11 eq) and provided diol $\underline{8}$ as the only isolated isomer (71 % yield). $|\underline{8}|$: 113°C; \vee 3500, 1400, 1170 cm⁻¹; δ (CDCl₃) 5.19 (1H, m), 3.95 (4H, m), 3.43 (1H, m), 2.99 (1H, s), 2.88 (1H, d, 2.5 Hz), 2.3 (1H, m), 2.15 (1H, ddd, 10.5, 10.5 and 2.5 Hz), 1.72 (3H, s), 1.64 (3H, s), 1.31 (3H, s); m/z at 310 (M⁺, 5), 292 (40), 274 (25), 99 (100) |. Ozonolysis (CH₂Cl₂, -78°C; Me₂S work-up) of $\underline{8}$ and Jones oxidation of the resulting lactol gave 9 (80 %). |Subl. 132-134°C; 3450, 1785, 1480, 1070 cm⁻¹; δ (CDCl₃) 4.0 (4H, m), 3.89 (1H, m), 2.6 (2H, m), 2.2 (1H, m), 1.34 (3H, s); m/z 282 (M⁺, 10), 99 (100) |. The structure of $\underline{9}$ was unambiguously proven by X-ray diffraction 9.

As indicated (vide supra) we now needed to invert the configuration at C-1. Ketone 10, however, obtained from 9 by hydrolysis (HC1-MeOH, 3N, r.t., 30 min, 73 % yield), |10|: v 3550, 1790, 1720, 1450, 1210, 980 cm⁻¹; & (CDC1₃) 4.09 (1H, t, 10.0 Hz), 2.83 (1H, ddd, 8.0, 11.5 and 15 Hz), 2.64 (3H, m), 2.5 (1H, m), 2.38 (3H, m), 1.36 (3H, s); m/z 238 (M⁺·, 10), 223 (3), 220 (10), 181 (60), 43 (100) | could not be epimerized: e.g., treatment with acid (HC1, MeOH, 3N). Examination of the preferred seven-membered ring conformations of both transand cis-fused perhydroazulenones 10 reveals the presence of severe non-bonded interactions between the methyl group at C-4 and the γ -lactone in the cis-fused series. We therefore decided to examine the possibility for inversion after dehydratation in the five-membered ring.

Treatment of $\underline{9}$ with Burgess reagent (MeOOCNSO₂NEt₃; benzene, 50°, 3 h) led to 11 (61 %; unseparable mixture of endo- and exo-double bond isomers, ratio 3:1 from 1 H NMR) and the 4,5 isomer (17 %). Rapid hydrolysis of 11 (HCl-MeOH, 3N, r.t.) gave $\underline{12}$: $|\Delta^{4,15}|$: δ (CDCl₃) 5.37 (1H, m), 5.03 (1H, m), 4.07 (1H, t, 9.5 Hz); $|\Delta^{3,4}|$: ν 1780, 1720, 1460, 1150, 810 cm⁻¹, δ (CDCl₃) 5.43 (1H, br. s), 4.0 (1H, t, 10 Hz), 3.14 (1H, ddd, 10, 10 and 7.5 Hz), 2.9 (2H, m), 1.83 (3H, br. s); m/z 220 (M⁺·, 100), 79 (98) |. Prolonged acid treatment led, as anticipated, to an equilibrium mixture of 12 and 13 (ratio 1:3, respectively). Preparative HPLC (Waters Ass. Prep LC/System 500) gave 13 (60 % isolated yield). |13: m.p. 87°C; \vee 1780, 1720, 1460 cm⁻¹, δ (CDCl₃) 5.5 (1H, br. s), 3.82 (1H, t, 10 Hz), 3.55 (1H, ddd, 9.0, 9.0 and 6.0 Hz), 3.08 (1H, br. t, 10 Hz), 1.84 (3H, br. s); m/z 220 (M^+ , 88), 205 (10), 80 (100) |. Wittig reaction on ketone 13 (Ph₃PCH₃.Br, NaOt.Am, toluene, r.t., 30 min) led to 14 (75 % yield) | semisolid oil; ν 3095, 1790, 1660, 1470, 1030 cm⁻¹; δ (CDCl₃) 5.54 (lH, br. s), 4.87 (1H, s), 4.84 (1H, s), 4.07 (1H, t, 9.5 Hz), 3.11 (1H, ddd, 7.5, 7.5 and 5.0 Hz), 2.83 (1H, br. t, 8.5 Hz) 2.65 (1H, m), 1.82 (3H, br. s); m/z 218 $(M^+, 30), 138 (100)$.

 $\alpha\text{-Hydroxymethylation}$ of the enolate anion of $\underline{14}$ (LDA, THF, -30°, CH $_2$ o), formation of the mesylate (MeSO $_2$ Cl, Et $_3$ N, CH $_2$ Cl $_2$, O°C) and elimination (DBU, r.t., 3 h) yielded (79 %) $\underline{15}$ |oil, ν 1775, 1655, 1640, 1450, 1270, 1010; δ

(CDCl₃) 6.2 (1H, d, 3.3 Hz), 5.54 (1H, br. s), 5.49 (1H, d, 3.3 Hz), 4.89 (1H, s), 4.86 (1H, s), 4.05 (1H, dd, 9 and 9 Hz), 3.15 (1H, m), 2.85 (2H, m), 1.86 (3H, br. s); m/z 230 (M⁺·)|. Epoxidation of triene 15 (mCPBA, CHCl₃, -5°C, 3 h) and column chromatography (SiO₂, ethylacetate-hexane 1:9) gave ($^+$)-estafiatin $^-$ 1 (69 %) |m.p. 92°-93°; $^+$ 2 1760, 1660, 1645, 1150 cm⁻¹, $^-$ 5 (CDCl₃) 6.21 (1H, d, 3.5 Hz), 5.48 (1H, d, 3.5 Hz), 4.95 (1H, br. s), 4.86 (1H, br. s), 4.07 (1H, dd, 8.5 and 11 Hz, 3.37 (1H, s), 2.98 (1H, ddd, 7.5, 7.5 and 10.5 Hz), 2.87 (1H, m), 1.6 (1H, s)|. Both $^-$ 1 and $^-$ 15 were found identical (TLC behavior and spectral properties) with optically active samples described by Edgar, Greene and Crabbé 2b , 10.

ACKNOWLEDGMENTS: We thank the N.F.W.O. and the "Ministerie voor Wetenschaps-beleid" for financial help to the laboratory. M.D. and A.A.D. are indebted to the I.W.O.N.L. for a graduate scolarship.

REFERENCES

- 1. Bevoegdverklaard navorser of the N.F.W.O.
- (a) C.H. Heathcock, "The Total Synthesis of Natural Products", J. Apsimon (Wiley-Interscience), 2, 197 (1973). For the synthesis of (-)-estafiatin from α-santonin, see (b) M.T. Edgar , A.E. Greene, P.J. Crabbé, J. Org. Chem., 44, 159 (1979); (c) L.A. Maçaira, F. Welbaneide, L. Machado, M. Garcia and J.A. Rabi, Tetrahedron Lett. 773 (1980).
- 3. A.A. Devreese, P.J. De Clercq and M. Vandewalle, Tetrahedron Lett. 4767 (1980).
- (a) M. Demuynck, P. De Clercq, M. Vandewalle, J. Org. Chem. 46, 4863 (1979) and references cited therein; (b) P.T. Lansbury, D.C. Hangauer, Jr., J.P. Vacca, J. Amer. Chem. Soc. 102, 3964 (1980); (c) K. Nagao, M. Chiba, J. Yoshimura, S. Won Kim, Chem. Pharm. Bull., 29(9), 2733 (1981).
- F. Sanchez-Viesca and J. Romo, Tetrahedron Lett. 1285 (1963); F. Bohlmann,
 H. Bornowski and C. Arndt, Chem. Ber., 99, 2828 (1966).
- See e.g. (a) M. Samson, P. De Clercq and M. Vandewalle, Tetrahedron, 33, 249 (1977); (b) P.A. Grieco, M. Nishizawa, T. Oguri, S.D. Burke and N. Marinovic, J. Amer. Chem. Soc., 99, 5773 (1977).
- 7. See ref. 8 in previous communication3.
- 8. Comparison of spectral data and Rf values of all four isomeric alkylated epoxy-ketones (two from $\underline{3}$ and two from $\underline{5}$) suggested the β -configuration of the isoprenyl group in the major isomer. Conclusive proof was obtained with the X-ray study of intermediate $\underline{9}$.
- 9. J.P. Declercq, G. Germain, M. Van Meerssche and A. Devreese, P. De Clercq and M. Vandewalle, Bull. Soc. Chim. Belges, 90, 899 (1981).
- 10. We thank Dr. Greene for kindly sending samples of (-)-1 and (+)-15.

(Received in UK 14 April 1982)